Что такое Простые числа

Простые числа — это натуральные числа, больше единицы, которые делятся без остатка только на 1 и на само число. Например: 2, 3, 5, 7, 11, 13, 17, 19, 23... Единица не является ни простым числом, ни составным.

Последовательность простых чисел начинается с 2 и является бесконечной; наименьшее простое число — это 2 (делится на 1 и на самого себя).

Составные числа — это натуральные числа, у которых есть больше двух делителей (1, оно само и например, 2 и/или 3); это противоположность простых чисел. Например: 4, 6, 9, 12 (все делятся на 2, на 3, на 1 и на само себя).

Все натуральные числа считаются либо простыми, либо составными (кроме 1).

Натуральные числа — это те числа, которые возникли натуральным образом при счёте предметов; например: 1, 2, 3, 4... (нет ни дробей, ни 0, ни чисел ниже 0).

Зачастую множество простых чисел в математике обозначается буквой P.

Простые числа до 1000

2 3 5 7 11 13 17 19 23
29 31 37 41 43 47 53 59 61 67
71 73 79 83 89 97 101 103 107 109
113 127 131 137 139 149

151

157

163

167

173

179

181

191

193

197

199

211

223

227

229

233

239

241

251

257

263

269

271

277

281

283

293

307

311

313

317

331

337

347

349

353

359

367

373

379

383

389

397

401

409

419

421

431

433

439

443

449

457

461

463

467

479

487

491

499

503

509

521

523

541

547

557

563

569

571

577

587

593

599

601

607

613

617

619

631

641

643

647

653

659

661

673

677

683

691

701

709

719

727

733

739

743

751

757

761

769

773

787

797

809

811

821

823

827

829

839

853

857

859

863

877

881

883

887

907

911

919

929

937

941

947

953

967

971

977

983

991 997

Как определить является ли число простым?

Очень простой способ понять является ли число простым — нужно его разделить на простые числа и посмотреть, получится ли целое число. Сначала нужно попробовать его разделить на 2 и/или на 3. Если получилось целое число, то оно не является простым.

Если после первого деления не получилось целого числа, значит нужно попробовать разделить его на другие простые числа: 5, 7, 11 и т. д. (на 9 делить не нужно, т. к. это не простое число и оно делится на 3, а на него вы уже делили).

Более структурированный метод — это решето Эратосфена.

Решето Эратосфена

Это алгоритм поиска простых чисел. Для этого нужно:

  1. Записать все числа от 1 до n (например, записываются все числа от 1 до 100 если нужны все простые числа между ними);
  2. Вычеркнуть все числа, которые делятся на 2 (кроме 2);
  3. Вычеркнуть все числа, которые делятся на 3 (кроме 3);
  4. Вычеркнуть все остальные простые числа, которые делятся на то же самое число (кроме самого числа) до самого n (после 3 это 5, 7, 11, 13, 17 и т. д.).

Те числа, которые не будут вычеркнуты в конце этого процесса являются простыми.

Взаимно простые числа

Это натуральные числа, у которых 1 — это единственный общий делитель. Например:

  • 14 (это 2 х 7) и 15 (это 3 х 5), единственный общий делитель — 1; если числа следуют одно за другим (как 13 и 12 либо 10 и 11), то они всегда будут взаимно простыми;
  • 7 (это 7 х 1) и 11 (это 11 х 1), это два простых числа, а значит единственный общий делитель всегда будет только единица, простые числа всегда являются взаимно простыми;
  • или 30 и 48 не являются взаимно простыми, т. к. 6 х 5 = 30 и 6 х 8 = 48 и 6 — это наибольший общий делитель, т. е.: НОД (30; 48) = 6.

Число Мерсенна

Простое число Мерсенна — это простое число вида:

число Мерсенна формула, 2 в степени p минус 1

До 1536 г. многие считали, что числа такого вида были все простыми, пока математик Ульрих Ригер не доказал, что 2 (^11) – 1 = 2047 было составным (23 x 89). Затем появились и другие составные числа (p = 23, 29, 31, 37 и др.).

Например для p = 23, это 2 (^23) – 1 = 8 388 607; И 47 x 178481 = 8 388 607, значит оно составное.

Почему 1 не является простым числом?

Российские математики Боревич и Шафаревич в своей знаменитой работе "Теория чисел" (1964 г.) определяют простое число как p (элемент кольца D), не равен ни 0, ни 1. И p можно называть простым числом, если его невозможно разложить на множители ab (т.е. p = ab), притом ни один из них не является единицей в D. Т. к. 1 невозможно представить ни в одном, ни в другом виде, 1 не считается ни простым числом ни составным.

Почему 4 не является простым числом?

Простое число — это натуральное число, больше единицы, которое делится без остатка на 1 и на самого себя. Т. к. 4 можно разделить на 1, на 2 и на 4, из-за деления на 2 оно не является простым.

Самое большое простое число

21 декабря 2018 года Great Internet Mersenne Prime Search (проект, целью которого является открытие новых простых чисел Мерсенна) обнаружил новое самое большое известное простое число:

(2 в степени 82,589,933) минус 1

Новое простое число также именуется как M82589933 и в нём более чем на полтора миллиона цифр больше, чем в предыдущем (найденном годом ранее).

Узнайте про Рациональные числа и Натуральные числа.