Что такое Простые числа
Простые числа — это натуральные числа, больше единицы, которые делятся без остатка только на 1 и на само себя. Например: 2, 3, 5, 7, 11, 13, 17, 19, 23... Единица не является ни простым числом, ни составным.
Последовательность простых чисел начинается с 2 и является бесконечной; наименьшее простое число — это 2 (делится на 1 и на самого себя).
Составные числа — это натуральные числа, у которых есть больше двух делителей (1, оно само и например, 2 и/или 3); это противоположность простым числам. Например: 4, 6, 9, 12 (все делятся на 2, на 3, на 1 и на само себя).
Все натуральные числа считаются либо простыми, либо составными (кроме 1).
Натуральные числа — это те числа, которые возникли натуральным образом при счёте предметов; например: 1, 2, 3, 4... (нет ни дробей, ни 0, ни чисел ниже 0).
Зачастую множество простых чисел в математике обозначается буквой P.
Простые числа до 1000
2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | |
29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 | 61 | 67 |
71 | 73 | 79 | 83 | 89 | 97 | 101 | 103 | 107 | 109 |
113 | 127 | 131 | 137 | 139 | 149 |
151 |
157 |
163 |
167 |
173 |
179 |
181 |
191 |
193 |
197 |
199 |
211 |
223 |
227 |
229 |
233 |
239 |
241 |
251 |
257 |
263 |
269 |
271 |
277 |
281 |
283 |
293 |
307 |
311 |
313 |
317 |
331 |
337 |
347 |
349 |
353 |
359 |
367 |
373 |
379 |
383 |
389 |
397 |
401 |
409 |
419 |
421 |
431 |
433 |
439 |
443 |
449 |
457 |
461 |
463 |
467 |
479 |
487 |
491 |
499 |
503 |
509 |
521 |
523 |
541 |
547 |
557 |
563 |
569 |
571 |
577 |
587 |
593 |
599 |
601 |
607 |
613 |
617 |
619 |
631 |
641 |
643 |
647 |
653 |
659 |
661 |
673 |
677 |
683 |
691 |
701 |
709 |
719 |
727 |
733 |
739 |
743 |
751 |
757 |
761 |
769 |
773 |
787 |
797 |
809 |
811 |
821 |
823 |
827 |
829 |
839 |
853 |
857 |
859 |
863 |
877 |
881 |
883 |
887 |
907 |
911 |
919 |
929 |
937 |
941 |
947 |
953 |
967 |
971 |
977 |
983 |
991 | 997 |
Как определить, является ли число простым?
Очень простой способ понять, является ли число простым — нужно его разделить на простые числа и посмотреть, получится ли целое число. Сначала нужно попробовать его разделить на 2 и/или на 3. Если получилось целое число, то оно не является простым.
Если после первого деления не получилось целого числа, значит нужно попробовать разделить его на другие простые числа: 5, 7, 11 и т. д. (на 9 делить не нужно, т. к. это не простое число и оно делится на 3, а на него вы уже делили).
Более структурированный метод — это решето Эратосфена.
Решето Эратосфена
Это алгоритм поиска простых чисел. Для этого нужно:
- Записать все числа от 1 до n (например, записываются все числа от 1 до 100, если нужны все простые числа между ними);
- Вычеркнуть все числа, которые делятся на 2 (кроме 2);
- Вычеркнуть все числа, которые делятся на 3 (кроме 3);
- И так далее по порядку со всеми невычеркнутыми числами до числа n (после 3 это 5, 7, 11, 13, 17 и т. д.).
Те числа, которые не будут вычеркнуты в конце этого процесса, являются простыми.
Взаимно простые числа
Это натуральные числа, у которых 1 — это единственный общий делитель. Например:
- 14 (это 2 х 7) и 15 (это 3 х 5), единственный общий делитель — 1; если числа следуют одно за другим (как 13 и 12 либо 10 и 11), то они всегда будут взаимно простыми;
- 7 (это 7 х 1) и 11 (это 11 х 1) — это два простых числа, а значит единственный общий делитель всегда будет только единица, простые числа всегда являются взаимно простыми;
- или 30 и 48 не являются взаимно простыми, т. к. 6 х 5 = 30 и 6 х 8 = 48 и 6 — это наибольший общий делитель, т. е.: НОД (30; 48) = 6.
Число Мерсенна
Простое число Мерсенна — это простое число вида:
До 1536 г. многие считали, что числа такого вида были все простыми, пока математик Ульрих Ригер не доказал, что 2 (^11) – 1 = 2047 было составным (23 x 89). Затем появились и другие составные числа (p = 23, 29, 31, 37 и др.).
Например, для p = 23 это 2 (^23) – 1 = 8 388 607; И 47 x 178481 = 8 388 607, значит оно составное.
Почему 1 не является простым числом?
Российские математики Боревич и Шафаревич в своей знаменитой работе "Теория чисел" (1964 г.) определяют простое число как p (элемент кольца D), не равен ни 0, ни 1. И p можно называть простым числом, если его невозможно разложить на множители ab (т.е. p = ab), притом ни один из них не является единицей в D. Так как 1 невозможно представить ни в одном, ни в другом виде, 1 не считается ни простым числом, ни составным.
Почему 4 не является простым числом?
Простое число — это натуральное число, больше единицы, которое делится без остатка на 1 и на само себя. Т. к. 4 можно разделить на 1, на 2 и на 4, из-за деления на 2 оно не является простым.
Самое большое простое число
21 декабря 2018 года Great Internet Mersenne Prime Search (проект, целью которого является открытие новых простых чисел Мерсенна) обнаружил новое самое большое известное простое число:
Новое простое число также именуется M82589933 и в нём более чем на полтора миллиона цифр больше, чем в предыдущем (найденном годом ранее).
Узнайте про Рациональные числа и Натуральные числа.