Теорема косинусов

Теорема косинусов — в любом треугольнике квадрат одной стороны равен сумме квадратов двух других сторон минус удвоенное произведение этих двух сторон на косинус угла между ними.

Формула косинуса:

  • a² = b² + c² – 2b.c.cosα
  • b² = a² + c² – 2a.c.cosβ
  • c² = a² + b² – 2a.b.cosγ

Теорема косинусов, Треугольник ABC, углы α, β, γ у соответствующих точек Формула косинуса пример

Например:

Одна сторона треугольника равна 12 см, другая — 8 см, между ними образовался угол 120º. Найдите длину третьей стороны.

Решение по формуле a² = b² + c² – 2b.c.cosα:

b = 12 см

c = 8 см

cos α = cos 120º = - 1/2 (это значение можно найти в таблицах)

a² = 12² + 8² – 2×12×8×(- 1/2)

a² = 144 + 64 – (–96)

a² = 304

a = √304

a ≈ 17,436

Длина третьей стороны — примерно 17,436 см.

Следствия

Следствие косинуса угла треугольника

При помощи теоремы косинусов можно найти косинус угла треугольника.

Формула:

cos(A)=(b² + c² -a²)/2bc

Либо

cos(B)=(c² + a² -b²)/2ca

Либо

cos(C)=(a² + b² -c²)/2ab

Например:

Теорема косинусов, Треугольник ABC, углы α, β, γ у соответствующих точек, стороны AB - 6см, AC - 7см, BC - 8см

сторона c = 6

сторона b = 7

сторона a = 8

Используйте теорему косинусов, чтобы найти угол β.

Решение:

Будем использовать эту версию формулы:

cos(B)=(c² + a² -b²)/2ca

cos β = (6² + 8² − 7²) / 2×6×8

= (36 + 64 − 49) / 96

= 51 / 96

= 0,53125

= cos¯¹(0,53125)

≈ 57,9°

Следствие верхней части формулы cos α

Чтобы узнать, если угол α острый, прямой или тупой, нужно вычислить b²+c²−a² (это верхняя часть формулы для cos α):

  • b²+c²−a²<0, значит угол α — тупой;
  • b²+c²−a²=0, значит угол α — прямой;
  • b²+c²−a²>0, значит угол α — острый.

Доказательство теоремы косинусов

Доказательство теоремы косинусов, Треугольник ABC, из B проведена линия до AC, показано точкой D, так, что угол D прямой

Нужно доказать, что c² = a² + b² − 2a.b.cos C

1. Из определения косинуса известно, что в прямоугольном треугольнике BCD: cos C = CD/a <=> CD = a.cos C.

2. Вычитаем это из стороны b, так мы получим DA:

DA = b − a.cosC

3. Мы знаем из определения синуса, что в том же треугольнике BCD:

sin C = BD/a <=> BD = a.sinC.

4. Применяем теорему Пифагора в треугольнике ADB: c² = BD² + DA²

5. Заменим BD и DA из пунктов 2) и 3), получится выражение: c²= (a. sin C)²+(b−a.cos C)²

6. Раскрываем скобки: c² = a² sin ²C + b² − 2a.b.cosC + a².cos²C

6.1. Поменяем их местами (a²cos²C поставим на второе место): c² = a² sin ²C + a²cos²C + b² − 2a.b.cosC

7. Выносим за скобки "a²": c² = a² (sin²C+cos²C) + b² − 2a.b.cosC

8. В скобках получилось основное тригонометрическим тождество (sin²α + cos²α = 1), значит его можно сократить т. к. умножение на единицу ничего не меняет, получилось: c² = a² + b² − 2a.b.cos C

Q.E.D.

Теорема косинусов для равнобедренного треугольника

В равнобедренном треугольнике:

  • две его стороны равны;
  • углы при основании равны.

Рассмотрим пример:

Теорема косинусов, равнобедренный Треугольник ABC, ∠B = 140º, стороны AB = BC = 8см, AC-?

Используем формулу теоремы косинусов

a² = b² + c² – 2b.c.cosα

Подставляем все известные:

x² = 8² + 8² – 2×8×8×cos140º

x² = 64 + 64 – 128 × (-0,766)

x² ≈ √226,048

x ≈ 15,035.

Теорема синусов

Теорема синусов гласит, что отношение стороны треугольника к синусу угла, противолежащего данной стороне, одинаково для всех сторон и углов в данном треугольнике:

(a/sinα)=(b/sinβ)=(c/sinγ)

Теорема косинусов, Треугольник ABC, углы α, β, γ у соответствующих точек, Теорема синусов

Узнайте также, что такое Теорема Пифагора и Теорема Менелая.